Eliminating control operators from classical realizability
On January 21st, I am giving a talk at GdT Théorie des types et réalisabilité. Abstract: The traditional method to extract programs from proofs of classical Analysis (Peano Arithmetic + Axiom of Choice) is to use an extension of Gödel's System T with bar recursion. An alternative method is to use an approach based on computational side-effects (control operators, quote/clock instructions) like in the works of Krivine or Herbelin. By classic results of Kreisel and Schwichtenberg, for the fragment of Analysis that makes sense computationally, the Π₂-fragment, we know that bar recursion is essentially primitive recursive — leaving open the question of how to actually avoid using it. In this talk, I will present some recent work (http://arxiv.org/abs/1301.5089) showing how realizers of System T can be extracted directly from proofs of the Σ₂-fragment of classical Analysis. Control operators are essential, but only at the meta-theoretical level: control operators can be compiled away from System T, at any simple type.
http://archives.pps.univ-paris-diderot.fr/gdt-types-realisabilite/index.html
Comment here: @danko@mamot.fr Follow using the Fediverse ID: @danko@blog.iaddg.net